
DT Commissioning Data Analysis

- Some organisational aspects
- MB4 analysis (Giorgia, Francesca)
- TP analysis (Mary-Cruz, Anna)
- Logbook

Cosmics Analysis Effort

- Idea: framework to discuss and coordinate analysis of commissioning data and preparation of cosmics challenge → "DT cosmics analysis"
- Bi-weekly meetings (VRVS) and one during CMS weeks Past meetings: summer 05, 19.Oct, 17.Nov, 23.Nov 05 Next: 09.Dec 10:00-13:00 Bat.40-R-A10 (VRVS Sky)
- Group got joined by members of Aachen, Madrid, Padova, Torino ~20 names on mailing list
 New students got involved and study commissioning data
- Mailing list = cms-project-dt-cosmics everybody interested can subscribe using SIMBA service

http://cern.ch/simba → Subscription to lists → list name "cms-project-dt-cosmics"
<your Email@host>

Organisation of Information

- Agenda's of the meetings are http://agenda.cern.ch/ → CMS → Muon detector
- Information and access at present:
 - Commissioning webpage http://cms.pd.infn.it/commissioning/
 - ISR webpage http://cmsdoc.cern.ch/cms/MUON/dt/isr/
 - Cosmic Challenge http://cmsdoc.cern.ch/cms/MUON/dt/CC/cc.html
- Information and access new:

All pages can be accessed via the CMS Muon Barrel Webpage (several people have writing access)

 $CMS \rightarrow Muon \rightarrow Muon DT = <u>http://cmsdoc.cern.ch/cms/MUON/dt/</u>$

- \rightarrow ISR (as above)
- \rightarrow CC (as above)
- → commissioning http://cmsdoc.cern.ch/cms/MUON/dt/SX5/

Information Logging & E-logbook

- Move from "paper-based" logbook information to electronics version
- E-version for commissioning based on the ISR web-based logging. Example:

http://isr-muon.web.cern.ch/isr-muon/cgi-bin/testsstatus.pl

Jesus Puerta

Will display chamber status in wheel Chambers currently under test

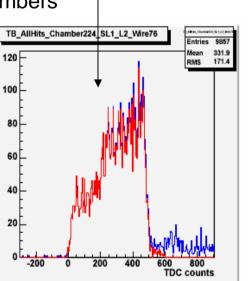
CHAMBER	wн	SE	STAT	HV STAT	OPENED	DRESSING	сояміс	SCALERS	MC	TIMECONST	DATE TIMECON
MB2											
MB00002_042	0	8	OK(FINISHED)		//	#20		-	1. 	1000	//
MB00002_044	0	9	THETA	<u>OK</u>	23/Nov/2005		OK	ji - 1	24	(19 44))	//
MB00002_037	0	10	OK(FINISHED)		//		- .	. <u>.</u> .			//
MB00002_045	0	11	OK(FINISHED)		//			÷	1.00	5 -4 .	//
MB00002_043	0	12	OK(FINISHED)		//	-	222	1 2 1	1 124		//
MB3	Ĩ										
MB00003_025	0	8	ОК	<u>OK</u>	14/Nov/2005		OK	DONE	TESTED_OK		/Nov/200
MB00003_037	0	9	МС	OK	//		OK	DONE		122	//
MB00003_044	0	10	OK(FINISHED)		//	-		-	-	3. -	//
MB00003_048	0	11	OK(FINISHED)		//		4-3	-	24	844	//
MB00003_035	0	12	OK(FINISHED)		//						//

To show: HV on/off, MC test, TP run, cosmics run, analysis, run summary, trigger config \rightarrow Jesus talk on Friday cosmics ana meeting

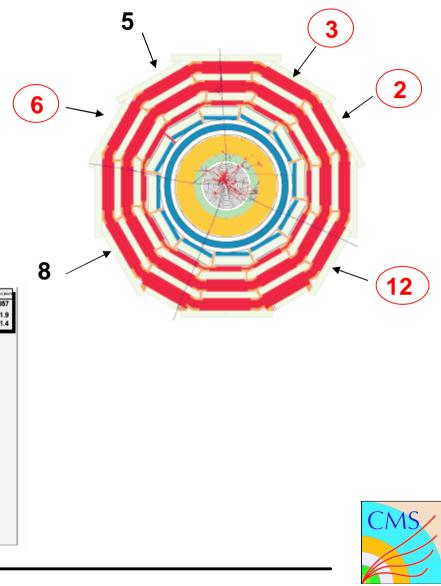
 \rightarrow Also electronics logbook based on ISR one

We have analyzed:

-Test pulses

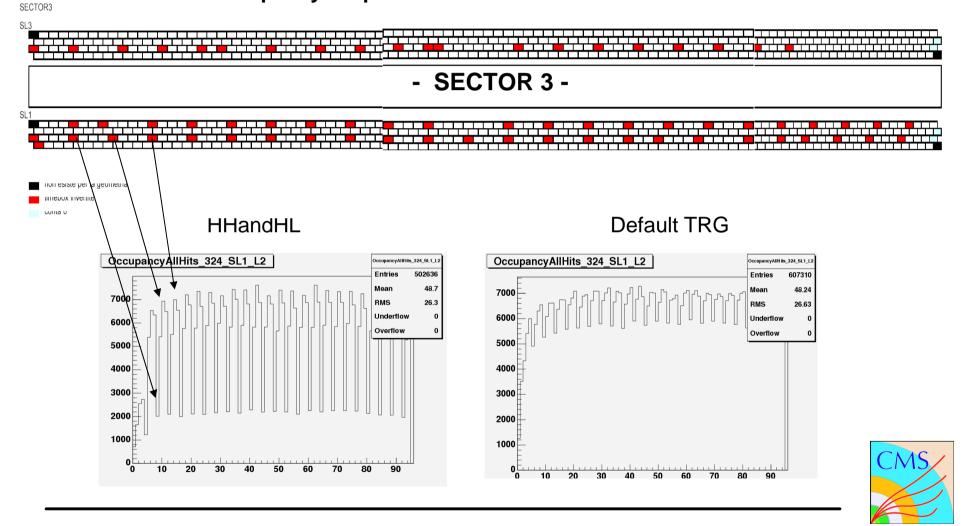

(Occupancy, Mean, RMS) seem OK !!!

-Cosmic runs


(Noise, occupancy, Time Boxes)

We have found the problem of the $\underline{``distorted"}$

time boxes in the red chambers

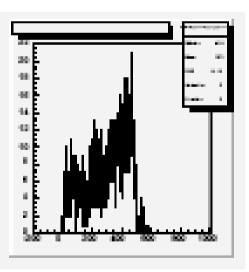

mb4, wheel 2, sector ..

MAPS OF CELLS WITH DISTORTED TIME BOXES

Cells with inverted time boxes are distributed according to a regular pattern

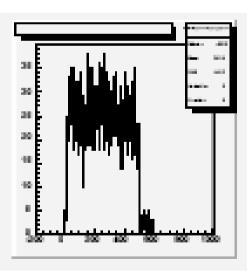
occupancy drops in the cells with distorted time boxes

23/11/05

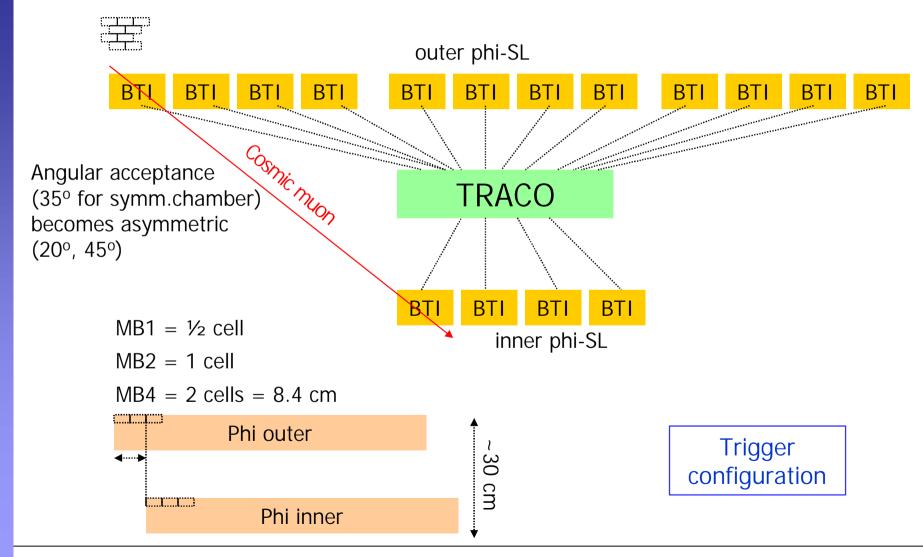

MB4

WHEEL2

This problem appears when we analyze data taken with a HHandHL trigger while we don't observe "distorted time boxes" in data taken with the default trigger

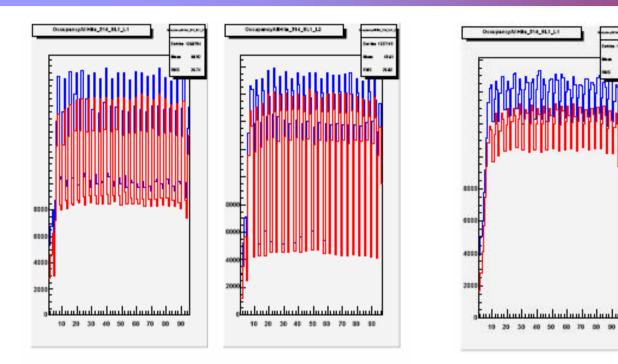

TRACO PROBLEM ?

For example these are the time boxes of the same wire (41) in SL1, L2 of the chamber placed in the sector 3


Default TRG

Potential Interpretation

Angular acceptance of TRACO and shift between both phi SLs


New Configuration

MB4 sector 3 YB+1

INVERSE AND AND A

ւ իստիստիստիստիստիստիստիստիստիստիստի

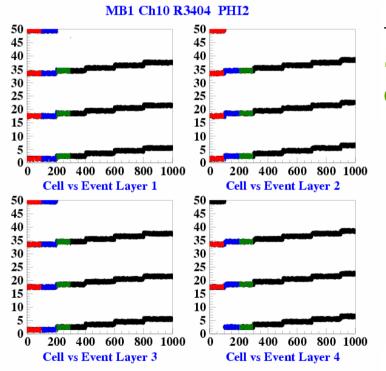
HHandHL New configuration Run 4060

HHandHL Old configuration Run 4059

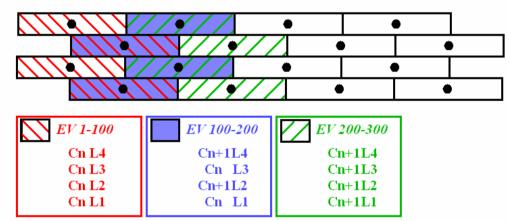
To be checked with SX5 data:

- Select ~vertical tracks
- Comparison of angular distribution for cells with normal/reduced occupancy

NUMBER OF SLOTE


• Dependence on sector number

Compare to ISR data in horizontal MB4 orientation


Analysis of testpulse runs at SX5

When TP are taken all FE channels are disabled but "1 column" every 16 on each superlayer (= 1 on each tp connector).

→ No signals are expected from a cell when it is disabled

→ Each group of 100 events corresponds to a different cell pattern

>> All the cells from the same FE connector would have similar TP values>> For all the FE connectors going to the same ROB we also expect similar values (Each ROB has its own delay)

Observations from TP runs for MB1, 2, 3

Most of TP runs for MB1,MB2,MB3 chambers at Wheel+2 have been analyzed

• Comparing the TP values for the different cells we found:

- □ L1&L3 have similar values
- □ L2&L4 have similar values
- Sometimes the results for even layers have a systematic shift with respect to odd layers. This shift seems to depend on the run.

 \rightarrow The difference are related to the TP run \rightarrow configuration ?

This will introduce an error on TO determination

→ It is possible fix the problem when taken TP data?

→ A solution well be to compute 2 global TO 's for each

individual SL one for the ODD layers and other for the

EVEN layers


Differences between odd & even layers

The average value of Dif Cell n (Layer 3– Layer 2) for each SL was computed and the results can be found on the tables on next slides.

Differences were computed cell by cell as:

Dif Cell n (Layer i – Layer j)= TP Cell n Layer i – TP Cell n Layer j

For the runs with "extra" differences on some connector, these "non expected" values were not used for the mean value computation.

Wheel 2 Chambers MB2. TP Layer3 – TP Layer 2

Sector	#Cha	Run	SL PHI1		SL The		SL PHI2	
			Mean	RMS	Mean	RMS	Mean	RMS
2/2/2	46	3567	1.85	0.55	1.57	0.41	1.70	0.50
2/3/2	47	3546	0.96	0.50	0.67	0.47	1.02	0.56
2/4/2	48	3470	1.75	0.49	1.72	0.50	1.70	0.50
2/5/2	19	3502	0.15	0.28	0.16	0.26	0.05	0.25
		3504	0.18	0.21	0.07	0.24	0.06	0.24
2/6/2	49	3426	2.46	0.40	2.51	0.50	2.5	0.50
2/8/2	22	3395	1.52	0.47	1.99	0.50	1.41	0.39
2/9/2	23	3343	0.33	0.35	0.42	0.28	0.38	0.28
2/10/2	24	3074	2.42	0.47	2.30	0.48	2.36	0.40
2/11/2	17	3000						
2/12/2	26	3315	1.37	0.39	1.20	0.60	1.26	0.40

Cells not used to calculate mean values

Run 3567	Cells 49-52	SL PHI2

Run 3546 Cells 53-60 SL PHI 2

Run 3074 Cells 33-48 SL PHI2

Summary and Conclusions

 Comparing the TP values for the different ROBs we found that in most of the cases the values are compatibles with the expectations with differences lower than 0.5ns.

BUT:

>> ROB4 at MB1 have a systematic difference of the order of 1ns

>> Chamber MB2 Ch23 Run3343:

Either ROB0 & ROB 6, either ROB1-ROB5 have differences of ~1ns

>> Chamber MB3 Ch12 Run3081:

ROBO have the same delay than ROB1 (Difference must be ~2.86ns)

>> Chamber MB3 Ch16 Run3256:

Either ROB0 & ROB 6, either ROB1-ROB5 have differences of ~1ns

Report on Track reconstruction of cosmic rays

Anna Meneguzzo

Goal : Track reconstruction with the best resolution

That is required for

- final commissioning checks
- cross checks with alignment measurements at ISR
- cosmic challenge and magnet test chamber behavior in magnet field and alignment parameter accuracy checks.

Ne	Needed steps:					
a)	Correct geometry					
b)	T0i correction i.e. channel by channel equalization with TP data					
c)	tTrig (i.e. common T0 for all data) after T0i corrections (with Gianluca method)					
d) ⁻	d) T0_event correction (after all previous checks) for removing the 25 ns spread wrt L1A					

Results of the checks I performed on the Toi*.txt file output by the monitor

TP 11-12

0.00

0.53

0.44

&13-14

SL2

TP 11-12

0.00

0.85

0.62

\$13-14

SL3

PHI₂

TP 11-12

0.00

0.43

0.35

&13-14

TP Line

CORR(am)

tdc count

0.5

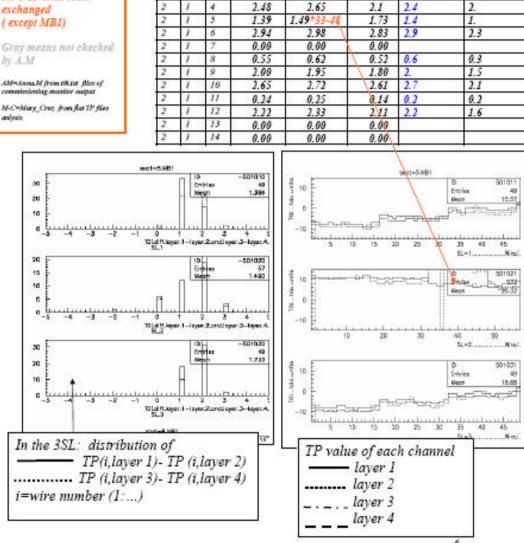
0.45

TP Line

ns

0.35

0.30


CORR(m c)

Wh MB sect SL1 PHI1

Legenda -*33-48 means cell in the SL with some TP problems :usually the 2 TP lines seem exchanged (except MB1) Gray means not checked by A.M.

commitmioning monitor output M-C=Marg_One: from fat TP files

aniyate.

Anna Meneguzzo

Example of an results table. Exists for all 4 chamber types.

Mary-Cruz recomputed TP T0i from flat files.

I checked T0i*.txt files output by the monitor program during shifts at SX5.

T0i Results:

The two computations (MC Fouz presentationand my studies) on W2 give compatible results.

I report in the next 4 tables the mean values of the differences between the T0i values of corresponding wires in layer 1 and of layer 2 and of layer 3 and layer 4 (each SL separately). In the last column I report the mean value of all the 3 SL.

The values in the last column are used to correct the shift of TP of odd layers in each chamber.

g data

"Dead" Cells found at TP runs & Cosmic check

In all 42 chambers in YB+2 – 7 new cells dead in TP and cosmics

Chamber	TPRun	DeadCell	Comments
MB1 Ch14	3463	Phi1 C40L1	NOT DEAD at Cosmic Run 3462
Sector 2/4/1			It seems that the TP peak is missing
		Phi1 C35L4	(See next slides)
MB2 Ch47	3546	The C21L1	Also DEAD at Cosmic Runs 3545 and 3547
Sector 2/3/2		The C4L3	
		The C15L3	
		The C12L4	
MB3 Ch8	3387	Phi2 C5L1	Also DEAD at Cosmic Runs 3385 and 3386
Sector 2/8/3		Phi2 C5L3	
MB3 Ch30	3682	Phi1 C27L4	Also DEAD at Cosmic Run 3677
Sector 2/3/3			
MB3 Ch24	3286	The C48L3	Is not dead, it is shifted by ~80TDC counts
Sector 2/11/3			(64 ns). (See next slides)
			It also happen at Cosmic Run 3285

New Dead Cells in MB1 YB+2

Use ISR chamber traveller and commissioning results

Sector	Chamber ID	Dead cells in AC Traveller	Commissioning result
02	028	Phi1: L2C01, L2C30	SL1: L2C01, L2C30
03	009	Theta: L4C28 Phi2: L1C20	SL2: L4C27 (?) SL3: L1C20
04	034 Confusion in No.	Phi1: L3C18 Theta: L4C45, L4C46	SL1: L3C18, L4C05 (TP yes) SL2: L4C45, L4C46
05	016	Theta: L1C50	SL2: L1C50
06	013	Phi1: L3C03, L1C45	SL1: L1C45, L3C03
08	010	Phi2: L2C07, L2C47	SL3: L2C06 (?) , L2C47
09	014	-	-
10	015	-	-
11	017	-	SL1: L2C22 ineff.
12	020	-	-

In YB+1 Sector 10, 11, 12 no new dead cells found in MB1

Subjects

• Subjects under study:

Already presented:

- Track reconstruction and event-by-event correction of T0 time jitter for cosmics in autotrigger mode (Anna, Francesca)
- Study of testpulses MB1-MB4 (Mary-Cruz)
- MB4 chamber performance (Giorgia, Francesca)

This Friday: in addition to further studies of above studies

- Electronics logbook (Jesus)
- Comparative study of MB1 in sectors 10, 11, 12 (Emanuel)
- Study of simulated cosmics (Philipp)

Envisaged:

- Trigger studies (Stefano)
- Influence of threshold and HV settings (Torino)
- Uncovered subjects:
 - Comparison of occupancy and time boxes to ISR data
 - Wire by wire studies (efficiency, resolution)
 - Commissioning in B-field goals of cosmic challenge
 - Someone may look at DCS data

Software tools:

- ORCA + commissioning package (MZ&GC)
- ORCA + own package
- Stand-alone software

What else....

To come:

- Complete analysis of dead cells
- Study of trigger configurations
- More detailed studies of MB1, MB2, MB4

-

Email contact: http://cern.ch/simba → Subscription to lists → list name "cms-project-dtcosmics" <your Email@host>

Agenda system with complete talks